United States: Making Sense Of The Litigation Analytics Revolution

Last Updated: October 5 2017
Article by Kirk Jenkins

"In God we trust. All others must bring data."

— Professor William Edwards Deming

All of us who often speak and write about the ongoing revolution in data analytics for litigation have heard it from at least some of our fellow lawyers: "Interesting, but so what?"

Here's the answer in a nutshell. One often hears that business hates litigation because it's enormously expensive and risky. There's a degree of truth to that, but it's far from the whole truth. Business doesn't dislike expense or risk per se. Business dislikes unquantified expense and risk. As the maxim often (incorrectly) attributed to Peter Drucker goes, "You can't manage what you can't measure."

Don't believe me? If your client offers to sell an investment bank a two billion dollar package of mortgages, the bank gets nervous. But tell the bank that based on the past ten years of data, 65.78 percent of the mortgages will be paid off early, 24.41 percent will be paid off on time, and 9.81 percent will default, and they know how to deal with that.

It's the same thing in litigation. For generations, most facts that would help a business person understand the risks involved have been solely anecdotal: this judge is somewhat pro-plaintiff or pro-defendant; the opposing counsel has a reputation for being aggressive or smart (or not); juries in this jurisdiction often make runaway damage awards or are notoriously parsimonious. But every one of those anecdotal impressions and bits of conventional wisdom can be approached from a data-driven perspective, quantified and proven (or disproven). Do that, and we've taken a giant step towards approaching litigation the way a business person approaches business—by quantifying and managing every aspect of the risk.

I hear lawyers talking about "early adopters" of data analytics tools in litigation, but the truth is, we're not early adopters by a long shot. The business world has been investing billions in data analytics tools for a generation in order to understand and manage their risks.

Tech companies use algorithms to choose among job applicants and assign "flight risk" scores to employees according to how likely each is thought to be to leave. Billions of dollars in stock are traded every day by algorithms designed to predict gains and reduce risk. Both Netflix and Amazon's websites (among many others) track what you look at and buy or rent in order to recommend additional choices you'll be interested in. In 2009, Google developed a model using search data which predicted the spread of a flu epidemic virtually in real time. UPS has saved millions by placing monitors in their trucks to predict mechanical failures and schedule preventive maintenance. The company's algorithm for planning drivers' optimal routes shaved 30 million miles off drivers' routes in a single year. Early in his term as New York Mayor, Michael Bloomberg created an analytics task force that crunched massive amounts of data gathered from all over the city to determine which illegal conversions (structures cut up into many smaller units without the appropriate inspections and licensing) were most likely to be fire hazards. Political campaigns now routinely use mountains of data to not only identify persuadable voters, but determine the method most likely to work with each one.

The application of data analytic techniques to the study of judicial decision making arguably begins with a 1922 article for the Illinois Law Review by political scientist Charles Grove Haines. Haines reviewed over 15,000 cases of defendants convicted of public intoxication in the New York magistrate courts. He showed that one judge discharged only one of 566 cases, another 18 percent of his cases, and still another fully 54%. Haines argued that his data showed that case results were reflecting to some degree the "temperament . . . personality . . . education, environment, and personal traits of the magistrates."

In the early 1940s, political scientist C. Herman Pritchett published The Roosevelt Court: A Study in Judicial Politics and Values, 1937-1947. Pritchett published a series of charts showing how often various combinations of Justices had voted together in different types of cases. He argued that the sharp increase in the dissent rate at the U.S. Supreme Court in the late 1930s necessarily argued against the "formalist" philosophy that law was an objective reality which judges merely found and declared.

Another landmark in the judicial analytics literature, the U.S. Supreme Court Database, traces its beginnings to the work of Professor Harold Spaeth about three decades ago. Professor Spaeth created a database which classified every vote by a Supreme Court Justice in every argued case for the past five decades. Today, thanks to the work of Spaeth and his colleagues Professors Jeffery Segal, Lee Epstein and Sarah Benesh, the database has been expanded to encompass more than two hundred data points from every case the Supreme Court has decided since 1791. The Supreme Court Database is the foundation of most data analytic studies of the Supreme Court's work.

Professors Spaeth and Segal also wrote one another classic, The Supreme Court and the Attitudinal Model, in which they proposed a model arguing that a judge's personal characteristics—ideology, background, gender, and so on—and so-called "panel effects"—the impact of having judges of divergent backgrounds deciding cases together as a single, institutional decision maker—could reliably predict case outcomes.

The data analytic approach began to attract attention in the appellate bar in 2013, with the publication of The Behavior of Federal Judges: A Theoretical & Empirical Study of Rational Choice. Judge Richard Posner and Professors Lee Epstein and William Landes applied various regression techniques to a theory of judicial decision making with its roots in microeconomic theory, discussing a wide variety of issues from the academic literature.

Although the litigation analytics industry is changing rapidly, the four principal vendors are Lex Machina, Ravel Law, Bloomberg Litigation Analytics and Premonition Analytics. Lex Machina and Ravel Law began as startups (indeed, both began at Stanford Law School), but LexisNexis has now purchased both companies. Lex Machina is fully integrated with the Lexis platform, and Ravel will be integrated in the coming months. Although there are certain areas of overlap, all four analytics vendors have taken a somewhat different approach and offer unique advantages. For example, Premonition's database covers not just most state and all federal courts, but also offers data on courts in the United Kingdom, Ireland, Australia, the Netherlands and the Virgin Islands.

The role of analytics in litigation begins with the earliest moments of a lawsuit. If you're representing the defendant, Bloomberg and Lex Machina both offer useful tools for evaluating the plaintiff. How often does the plaintiff file litigation, and in what areas of the law? Were earlier lawsuits filed in different jurisdictions from your new case, and if so, why? Scanning your opponent's filings in cases in other jurisdictions can sometimes reveal useful admissions or contradictory positions. If your case is a putative class action, these searches can help determine at the earliest moment whether the named plaintiff has filed other actions, perhaps against other members of your client's industry. Have the plaintiff's earlier actions ended in trials, settlements or dismissals? This can give counsel an early indication of just how aggressive the plaintiff is likely to be.

All four major vendors have useful tools for researching the judge assigned to a new case. Ravel Law has analytics for every federal judge and magistrate in the country, as well as all state appellate judges. State court analytics research is always a challenge because of the number of states whose dockets are not yet available in electronic form, but Premonition Analytics claims to have as large a state-court database as Lexis, Westlaw and Bloomberg combined. How much experience does your judge have in the area of law your case involves compared to other judges in the jurisdiction? How often does the judge grant partial or complete dismissals or summary judgments early-on? How often does the judge preside over jury trials? Were there jury awards in any of those trials, and how do they compare to other judges' trials? What is defendants' winning percentage in recent years before your judge? Ravel Law and Bloomberg can provide data on how often your trial judge's opinions are cited by other courts— an indicator of how well respected the judge is by his or her peers— as well as how often the judge is appealed, and how many of those appeals have been partially or completely successful. The data can be narrowed by date in order to focus on the most recent decisions, as well as by area of law. Say your assigned judge appears to be more frequently appealed and reversed than his or her colleagues in the jurisdiction. Are the reversals evenly distributed across time, or concentrated in any particular area of law? If your judge's previous decisions in the area of law where your case arises have been reversed unusually often, it can influence how you conduct the litigation. Counsel can keep all this data current through Premonition's Vigil court alert system, which patrols Premonition's immense litigation database and can give counsel hourly alerts and updates, keyed to party name, judge, attorney or case type, from federal, state and county courts. Many jurisdictions give parties one opportunity, before any substantive ruling is made, to seek recusal of the assigned judge as a matter of right, without proof of prejudice. Data-driven judge research can help inform your decision as to whether to exercise that right.

Lex Machina's analytics platform focuses on several specific areas of law, giving counsel a wealth of information for researching a jurisdiction (additional databases on more areas of law will be coming soon). For example, in antitrust, cases are tagged to distinguish between class actions, government enforcement, Robinson-Patman Act cases, as well as others. The platform is integrated with the MDL database, linking procedurally connected cases. The database reflects both damages—whether through a jury award or a settlement—and additional remedies, such as divestiture and injunction. Cases are also tagged by the specific antitrust issue, such as Sherman Act Section 1, Clayton Act Section 7, the rule of reason or antitrust exemptions. The commercial litigation data includes the nature of the resolution, any compensatory or punitive damages, and the legal finding—contract breach, rescission, unjust enrichment, trade secret misappropriation, and many more. The copyright database similarly tracks damages, findings and remedies, and allows users to exclude from their data "copyright troll" filings. Lex Machina's federal employment law database includes tags for the type of damages—backpay, liquidated damages, punitive damages and emotional distress, the nature of any finding, and the remedy given. The patent litigation database includes many similar fields, but also a patent portfolio evaluator, isolating which patents have been litigated, and a patent similarity engine, which finds new patents and tracks their litigation history. The securities litigation database enables users to focus on the type of alleged violation, tracking the most relevant outcomes, and the trademark litigation database contains data for the legal issues and findings, damages and remedies in each case.

Analytics research is important for the plaintiffs' bar as well. Bloomberg's Legal Analytics platform is integrated with its enormous library of corporate data covering 70,000 publicly held and 3.5 million private companies. Counsel can survey a company's litigation history, and the information is keyed to the underlying dockets. The data can be focused by jurisdiction or date, as well as to include or exclude subsidiaries. Lex Machina's Comparator app can compare not only the length of time particular judges' cases tend to take to reach key milestones but also previous outcomes, including damages awards and attorneys' fees awards. A plaintiffs' firm can use such data in cases where there are multiple possible venues to select the jurisdiction likely to deliver the most favorable result in the shortest time.

One bit of conventional wisdom that is commonly heard in the defense bar is that defendants should generally remove cases to federal court when they have the right to do so because juries are less prone to extreme verdicts and the judges are more favorable to defendants. Although comprehensive data on state court trial judges is still less common than data on federal judges, all four major analytic platforms can help evaluate courts and compare judges, giving a client a data-driven basis for making the removal decision.

Researching your opposing counsel is important for both defendants and plaintiffs. How aggressive is opposing counsel likely to be? Bloomberg Analytics covers more than 7,000 law firms, and enables users to focus results by clients, date and jurisdiction. Is your opposing counsel in front of your judge all the time? If so, that can inform decisions like whether to seek of-right substitution of the judge or remove the case. What were the results of those earlier lawsuits? Reviewing opposing counsel's client list can suggest how experienced opposing counsel is in the area of law where your case arises. Lex Machina's law firms comparator also enables the user to compare opposing counsel to their peers, and get an idea of what opposing counsel's approach to the lawsuit is likely to be. Lex Machina's app enables counsel to compare opposing counsel's previous cases by open and terminated cases, days elapsed to key events in the case, case resolutions and case results. In preparing this article, I reviewed a report generated by Lex Machina's Law Firms Comparator and learned several things I didn't know about my own firm's practice. Ravel Law's Firm Analytics enables counsel to study similar data about one's opponent, focused by practice area, court, judge, time or proceeding—or all of the above. Firm Analytics also compares opposing counsel to other law firms in the jurisdiction, showing whether counsel appears before the trial judge frequently, and whether they tend to win (or lose) more often than comparable firms. All this information gives counsel a tremendous leg up as far as estimating how expensive the litigation is likely to be.

As you begin to develop the facts of a case, motions begin to suggest themselves. Is your client's connection to the jurisdiction sufficiently tenuous to support a motion to dismiss for lack of personal jurisdiction, or for change of venue? Has the plaintiff failed to satisfy the Twombly/Iqbal standard by stating a plausible claim? Discovery motions to compel and for protective orders are commonplace, and inevitably defense counsel will face the question of whether to file a motion for summary judgment.

Ravel Law's platform has extensive resources for motions research. For every Federal judge, the system can show you how likely the judge is to grant, partially grant or deny a total of 90+ motions—not just the easy ones like motions for summary judgment or to dismiss, but motions to stay proceedings or remand to state court, motions to certify for interlocutory appeal, motions for attorneys' fees, motions to compel or for an injunction and motions in limine. This can by an enormous savings in both time and money for your clients. Even where examining the facts suggests that a motion for summary judgment might be in order, that calculus might look very different when one learns that the trial judge has granted only 18 percent of the summary judgment motions brought before him or her since 2010.

On Lex Machina's platform, counsel can use the "motion kickstarter" to survey recent motions before the assigned trial judge. The "motion chain" links together the briefing and the eventual order for each motion, so counsel can identify the arguments which have succeeded in recent cases, and review both the parties' briefs and the judge's order.

Ravel Law offers extensive resources to help counsel in crafting their arguments. As counsel does her research, Ravel Law shows visualizations demonstrating how different passages of a case have been cited, and by which judges, enabling counsel to quickly zero in on the passages which judges have found most persuasive. Or the research can be approached from the other direction, by identifying the cases and passages most often cited by your judge for particular principles. How does the judge typically explain the standards for granting a motion to dismiss, or for summary judgment? Does the judge tend to frequently cite Latin legal maxims, or even sports analogies? How does your federal judge handle the state law of his or her home jurisdiction? How has your judge ruled in rapidly evolving areas of the law, such as class certification, arbitration and personal jurisdiction? Now it's easy to find out.

And when the case finally goes to trial, there's still a role for judicial analytics. How often do the judge's cases go to trial? What kinds of cases have tended to go to trial before your trial judge? What were the results? The data you pulled at the outset on the length of the judge's previous trials might suggest just how liberal or strict the judge tends to be with the parties in trial. Did either party waive a jury, and if so, what happened? How has your trial judge handled jury instructions in recent trials where the parties didn't waive the jury? What were the awards of damages, plus any awards of attorneys' fees or punitive damages?

Post-trial is an often overlooked opportunity to cut litigation short by limiting or entirely wiping out an adverse verdict through new trial motions and motions notwithstanding the verdict. Counsel can determine on Lex Machina's motion comparator, Ravel Law's motions database or Bloomberg's Litigation Analytics how likely judges are to either overturn or modify a jury verdict. A close look at the data and recent orders and motions will help inform a decision as to whether to file a motion for judgment notwithstanding the verdict or a motion for new trial. If your client has been hit with a punitive damages award, you'll need to review not only the judge's record on post-trial review of punitives, but drill down from there to the order and the briefing on the motion to evaluate what approaches worked (or didn't).

Analytics have tremendous potential in appellate work too. All of the major vendors have enormous collections of data on state and federal appellate courts and judges. But for my firm's appellate practice, I was interested in tracking a number of different variables which would be difficult to extract through computer searches, so rather than relying on any of the vendors, I built two databases in-house. Our California and Illinois Supreme Court databases are modeled after Professors Spaeth and Segal's Supreme Court database, tracking many of the same variables. My California Supreme Court database encompasses every case the court has decided since January 1, 1994 – 1,004 civil and 1,293 criminal, quasi-criminal and attorney disciplinary. My Illinois Supreme Court database is even bigger, including every case that court has decided since January 1, 1990 – 1,352 civil and 1,529 criminal. For each of these 5,000+ cases, I've extracted roughly one hundred different data points. Was the plaintiff or the defendant the appellant in the Supreme Court? Is there a government entity on either side? Where did the case originate, and who was the trial judge? Before the intermediate appellate court, we track dissents, publication, the disposition and the ideological direction of the result. We track three dates for each case: the date review was granted, the date of the argument and the date of the decision. Before the Supreme Court, we note both the specific issue and the area of the law involved, the prevailing party and the vote, the writers and length of all opinions, the number of amicus curiae briefs and who each amicus supported, and of course each Justice's vote. In addition, our database includes data from every oral argument at the Illinois Supreme Court since 2008, and arguments at the California Supreme Court since May 2016, when the Court first started posting video and audio tapes of its sessions.

Conventional wisdom in most jurisdictions holds that unless the intermediate appellate court's decision was published with a dissent, it's not worth seeking Supreme Court review. We've demonstrated that in fact, a significant fraction of both the California and Illinois Supreme Court's civil dockets arises from unpublished unanimous decisions. We track not just aggregate reversal rates for intermediate appellate courts, but break the data down into reversal rates by area of law.

Lag times are particularly interesting in California, since the Supreme Court is generally required to decide cases within ninety days of oral argument. As a result, the vast majority of the lag between grant of review and final decision in California falls between grant and argument, rather than argument and decision. Not only have we tracked the average time to resolution for civil and criminal cases— we've demonstrated that there's a correlation between the Supreme Court's decision and the lag time from grant to argument. We've tracked the individual Justices' voting records, not just overall, but one area of law at a time.

Only in the past few years have data analysts began to take a serious look at appellate oral arguments. The earliest study appears to be Sarah Levien Shullman's 2004 article for the Journal of Appellate Practice and Process. Shullman analyzed oral arguments in ten cases at the United States Supreme Court, noting each question asked by the Justices and assigning a score from one to five to each depending on how helpful or hostile she considered the question to be. Based upon her data, she made predictions as to the ultimate result in the three remaining cases. Comparing her predictions to the ultimate results, Shullman concluded that it was possible to predict the result in most cases by a simple measure – the party being asked the most questions generally lost.

John Roberts addressed the issue of oral argument the year after Shullman's study appeared. Then-Judge Roberts noted the number of questions asked in the first and last cases of each of the seven argument sessions in the Supreme Court's 1980 Term and the first and last cases in each of the seven argument sessions in the 2003 Term. Like Shullman, Roberts found that the losing side was almost always asked more questions.

Timothy Johnson and three other professors published their analysis in 2009. Johnson and his colleagues examined transcripts from every Supreme Court case decided between 1979 and 1995—more than 2,000 hours of argument in all, and nearly 340,000 questions from the Justices. The study concluded, after controlling for a number of other factors that might explain case outcomes, all other factors being equal, the party asked more questions generally wound up losing the case.

Professors Lee Epstein and William M. Landes and Judge Richard A. Posner published their study in 2010. Epstein, Landes and Posner used Professor Johnson's database, tracking the number of questions and average words used by each Justice. Like Professor Johnson and his colleagues, they concluded that the more questions a Justice asks, all else being equal, the more likely the Justice will vote against the party, and the greater the difference between total questions asked to each side, the more likely a lopsided result is. Our study of every oral argument at the Illinois Supreme Court from 2008 through 2016 came to the same conclusion: the larger the margin between your total questions from the Court and your opponent, the less your chance of winning.

Litigation analytics can uncover useful insights outside of courtrooms as well. Corporate legal departments are increasingly using analytics to track and manage their outside counsel. Does the company have more or less litigation than its competitors? Do the lawsuits last a comparable length of time, and is the company's win rate comparable to its peers? What are the trends over time? When the company is selecting counsel for a particular lawsuit, depending on where the case is venued, it should be possible by consulting Premonition, Lex Machina or Bloomberg to compare each candidate counsel's winning percentage in the jurisdiction and before the particular judge, as well as to develop far more background information than was ever possible before. From the viewpoint of the law firms competing for business, analytics offers an invaluable insight into the nature of your target client's business. All the same questions which the legal department will likely be interested in are valuable to the outside attorneys as well. Is your target's current counsel not winning cases as often as other companies are? What's the nature of the company's litigation? And if candidate counsel can discover the names of the other firms competing for the business, analytics databases can provide detailed information about those lawyers' experience and relevant background. Premonition's Vigil court alerts system can get lawyers word of a new filing or case development involving a client or potential client only an hour or two after it happened, not a few days later.

So how does the future look? We're still in the early days of the revolution in litigation analytics. As the federal PACER system is upgraded and more and more states put some or all dockets in electronic form, more litigation data will become available to analytics vendors. Analytics scholars will develop new methods to turn additional aspects of litigation into usable data. Upgrades in artificial intelligence systems will result in analytics learning to gather more subtle data from court records— the kind of variables that require understanding and interpretation, rather than simply looking for text strings. More analytics vendors will inevitably enter the market.

Lawyers will have to become comfortable working with analytics data in situations where decisions were once made based upon intuition and experience, both in courtrooms and in clients' counsel searches. More law firms will likely develop in-house analytics databases similar to mine in other large states.

We've barely scratched the surface in terms of statistical and theoretical techniques which can uncover new insights about litigation and judicial decision making. Several academics have proposed algorithms for predicting case outcomes based on information such as the composition of an appellate panel and the ideology, gender and background of the judges, and these algorithms have generally performed better than law professors' predictions based on the legal issues involved. Regression modeling is a natural next step not just to predict case results, but to estimate the real impact of various variables, such as how much (if at all) amicus support increases one's odds of winning. Several vendors have touted their data on winning percentages for lawyers, but regression modeling could isolate how much impact a particular counsel really has upon a party's chances, or whether the jurisdiction or the nature of a lawyer's clients explains his or her record. As Judge Posner and Professors Epstein and Landes suggested in The Behavior of Federal Judges, computerized sentiment analysis of the content of judicial opinions could produce more nuanced insights about particular judges' attitudes and ideology. Game theory is another well-developed academic discipline with a largely untapped potential for understanding how appellate courts work.

We end with the question every analytics scholar (and vendor) is asked sooner or later: will litigation analytics replace lawyers?

The answer is no, for two reasons.

The first is what I think of as the orange used car problem.

A few years ago, a company which conducts data mining competitions for corporate clients ran a contest in hopes of building an algorithm to determine which among used cars available at auction was likely to have mechanical problems. They collected the data, ran the correlations, and it turned out the strongest correlation to "few or no mechanical problems" was, you guessed it, that the vehicle was orange.

A few people facetiously proposed theories as to why orange used cars might be more trouble-free (maybe car fanciers with better maintenance habits are drawn to them?), but this is an example of one of the most fundamental rules in data analytics: correlation does not necessarily indicate causation. Saying two variables are highly correlated doesn't necessarily mean one is causing the other; both could be caused by a third, unidentified variable, or it could be a random correlation, or your dataset could be biased or simply too small. Much of litigation analytics—at least short of the more sophisticated logistic regression modeling – currently consists of identifying correlations. It takes an experienced lawyer intermediary to review the data and understand what are valuable, actionable insights and what are just orange used cars.

The second reason is even more fundamental: all litigation analytics require interpretation, and one must keep constantly in mind—and remind clients early and often – that nothing in analytics is a guarantee of any particular result. The more heavily questioned party does win at times in the appellate courts. Just because Justices A and B have voted together in 75 percent of the tort cases in the past five years is no guarantee they won't disagree about the next one. The academic algorithms which have been developed for predicting results at the Supreme Court are wrong anywhere from twenty percent to a third of the time. Some often-quoted statistics can mislead through over-aggregation. For example, perhaps an intermediate court's overall reversal rate on all cases is two-thirds, but on further analysis, it turns out that the reversals are all in tort cases, while the court is generally affirmed in other areas of the law.

Does this mean that litigation analytics are irrelevant? No, no more so than the bank would find the experiential data on the hypothetical mortgage bundle we discussed at the outset irrelevant. Attorneys have been predicting what courts are likely to do for generations based on intuition, experience and anecdote. The business world began moving away from that a generation ago, and now that revolution has struck the law full force. Today, there's data for most aspects of litigation, and that trend builds every year. The advent of litigation analytics and data-driven decision making is a game-changer in terms of intelligent management of litigation risk.

Reprinted with permission from the October 2017 issue of ALI CLE's The Practical Lawyer.

The content of this article is intended to provide a general guide to the subject matter. Specialist advice should be sought about your specific circumstances.

To print this article, all you need is to be registered on Mondaq.com.

Click to Login as an existing user or Register so you can print this article.

Authors
 
In association with
Related Video
Up-coming Events Search
Tools
Print
Font Size:
Translation
Channels
Mondaq on Twitter
 
Register for Access and our Free Biweekly Alert for
This service is completely free. Access 250,000 archived articles from 100+ countries and get a personalised email twice a week covering developments (and yes, our lawyers like to think you’ve read our Disclaimer).
 
Email Address
Company Name
Password
Confirm Password
Position
Mondaq Topics -- Select your Interests
 Accounting
 Anti-trust
 Commercial
 Compliance
 Consumer
 Criminal
 Employment
 Energy
 Environment
 Family
 Finance
 Government
 Healthcare
 Immigration
 Insolvency
 Insurance
 International
 IP
 Law Performance
 Law Practice
 Litigation
 Media & IT
 Privacy
 Real Estate
 Strategy
 Tax
 Technology
 Transport
 Wealth Mgt
Regions
Africa
Asia
Asia Pacific
Australasia
Canada
Caribbean
Europe
European Union
Latin America
Middle East
U.K.
United States
Worldwide Updates
Registration
Mondaq Ltd requires you to register and provide information that personally identifies you, including what sort of information you are interested in, for three primary purposes:
  • To allow you to personalize the Mondaq websites you are visiting.
  • To enable features such as password reminder, newsletter alerts, email a colleague, and linking from Mondaq (and its affiliate sites) to your website.
  • To produce demographic feedback for our information providers who provide information free for your use.
  • Mondaq (and its affiliate sites) do not sell or provide your details to third parties other than information providers. The reason we provide our information providers with this information is so that they can measure the response their articles are receiving and provide you with information about their products and services.
    If you do not want us to provide your name and email address you may opt out by clicking here
    If you do not wish to receive any future announcements of products and services offered by Mondaq you may opt out by clicking here

    Terms & Conditions and Privacy Statement

    Mondaq.com (the Website) is owned and managed by Mondaq Ltd and as a user you are granted a non-exclusive, revocable license to access the Website under its terms and conditions of use. Your use of the Website constitutes your agreement to the following terms and conditions of use. Mondaq Ltd may terminate your use of the Website if you are in breach of these terms and conditions or if Mondaq Ltd decides to terminate your license of use for whatever reason.

    Use of www.mondaq.com

    You may use the Website but are required to register as a user if you wish to read the full text of the content and articles available (the Content). You may not modify, publish, transmit, transfer or sell, reproduce, create derivative works from, distribute, perform, link, display, or in any way exploit any of the Content, in whole or in part, except as expressly permitted in these terms & conditions or with the prior written consent of Mondaq Ltd. You may not use electronic or other means to extract details or information about Mondaq.com’s content, users or contributors in order to offer them any services or products which compete directly or indirectly with Mondaq Ltd’s services and products.

    Disclaimer

    Mondaq Ltd and/or its respective suppliers make no representations about the suitability of the information contained in the documents and related graphics published on this server for any purpose. All such documents and related graphics are provided "as is" without warranty of any kind. Mondaq Ltd and/or its respective suppliers hereby disclaim all warranties and conditions with regard to this information, including all implied warranties and conditions of merchantability, fitness for a particular purpose, title and non-infringement. In no event shall Mondaq Ltd and/or its respective suppliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection with the use or performance of information available from this server.

    The documents and related graphics published on this server could include technical inaccuracies or typographical errors. Changes are periodically added to the information herein. Mondaq Ltd and/or its respective suppliers may make improvements and/or changes in the product(s) and/or the program(s) described herein at any time.

    Registration

    Mondaq Ltd requires you to register and provide information that personally identifies you, including what sort of information you are interested in, for three primary purposes:

    • To allow you to personalize the Mondaq websites you are visiting.
    • To enable features such as password reminder, newsletter alerts, email a colleague, and linking from Mondaq (and its affiliate sites) to your website.
    • To produce demographic feedback for our information providers who provide information free for your use.

    Mondaq (and its affiliate sites) do not sell or provide your details to third parties other than information providers. The reason we provide our information providers with this information is so that they can measure the response their articles are receiving and provide you with information about their products and services.

    Information Collection and Use

    We require site users to register with Mondaq (and its affiliate sites) to view the free information on the site. We also collect information from our users at several different points on the websites: this is so that we can customise the sites according to individual usage, provide 'session-aware' functionality, and ensure that content is acquired and developed appropriately. This gives us an overall picture of our user profiles, which in turn shows to our Editorial Contributors the type of person they are reaching by posting articles on Mondaq (and its affiliate sites) – meaning more free content for registered users.

    We are only able to provide the material on the Mondaq (and its affiliate sites) site free to site visitors because we can pass on information about the pages that users are viewing and the personal information users provide to us (e.g. email addresses) to reputable contributing firms such as law firms who author those pages. We do not sell or rent information to anyone else other than the authors of those pages, who may change from time to time. Should you wish us not to disclose your details to any of these parties, please tick the box above or tick the box marked "Opt out of Registration Information Disclosure" on the Your Profile page. We and our author organisations may only contact you via email or other means if you allow us to do so. Users can opt out of contact when they register on the site, or send an email to unsubscribe@mondaq.com with “no disclosure” in the subject heading

    Mondaq News Alerts

    In order to receive Mondaq News Alerts, users have to complete a separate registration form. This is a personalised service where users choose regions and topics of interest and we send it only to those users who have requested it. Users can stop receiving these Alerts by going to the Mondaq News Alerts page and deselecting all interest areas. In the same way users can amend their personal preferences to add or remove subject areas.

    Cookies

    A cookie is a small text file written to a user’s hard drive that contains an identifying user number. The cookies do not contain any personal information about users. We use the cookie so users do not have to log in every time they use the service and the cookie will automatically expire if you do not visit the Mondaq website (or its affiliate sites) for 12 months. We also use the cookie to personalise a user's experience of the site (for example to show information specific to a user's region). As the Mondaq sites are fully personalised and cookies are essential to its core technology the site will function unpredictably with browsers that do not support cookies - or where cookies are disabled (in these circumstances we advise you to attempt to locate the information you require elsewhere on the web). However if you are concerned about the presence of a Mondaq cookie on your machine you can also choose to expire the cookie immediately (remove it) by selecting the 'Log Off' menu option as the last thing you do when you use the site.

    Some of our business partners may use cookies on our site (for example, advertisers). However, we have no access to or control over these cookies and we are not aware of any at present that do so.

    Log Files

    We use IP addresses to analyse trends, administer the site, track movement, and gather broad demographic information for aggregate use. IP addresses are not linked to personally identifiable information.

    Links

    This web site contains links to other sites. Please be aware that Mondaq (or its affiliate sites) are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of these third party sites. This privacy statement applies solely to information collected by this Web site.

    Surveys & Contests

    From time-to-time our site requests information from users via surveys or contests. Participation in these surveys or contests is completely voluntary and the user therefore has a choice whether or not to disclose any information requested. Information requested may include contact information (such as name and delivery address), and demographic information (such as postcode, age level). Contact information will be used to notify the winners and award prizes. Survey information will be used for purposes of monitoring or improving the functionality of the site.

    Mail-A-Friend

    If a user elects to use our referral service for informing a friend about our site, we ask them for the friend’s name and email address. Mondaq stores this information and may contact the friend to invite them to register with Mondaq, but they will not be contacted more than once. The friend may contact Mondaq to request the removal of this information from our database.

    Emails

    From time to time Mondaq may send you emails promoting Mondaq services including new services. You may opt out of receiving such emails by clicking below.

    *** If you do not wish to receive any future announcements of services offered by Mondaq you may opt out by clicking here .

    Security

    This website takes every reasonable precaution to protect our users’ information. When users submit sensitive information via the website, your information is protected using firewalls and other security technology. If you have any questions about the security at our website, you can send an email to webmaster@mondaq.com.

    Correcting/Updating Personal Information

    If a user’s personally identifiable information changes (such as postcode), or if a user no longer desires our service, we will endeavour to provide a way to correct, update or remove that user’s personal data provided to us. This can usually be done at the “Your Profile” page or by sending an email to EditorialAdvisor@mondaq.com.

    Notification of Changes

    If we decide to change our Terms & Conditions or Privacy Policy, we will post those changes on our site so our users are always aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it. If at any point we decide to use personally identifiable information in a manner different from that stated at the time it was collected, we will notify users by way of an email. Users will have a choice as to whether or not we use their information in this different manner. We will use information in accordance with the privacy policy under which the information was collected.

    How to contact Mondaq

    You can contact us with comments or queries at enquiries@mondaq.com.

    If for some reason you believe Mondaq Ltd. has not adhered to these principles, please notify us by e-mail at problems@mondaq.com and we will use commercially reasonable efforts to determine and correct the problem promptly.

    By clicking Register you state you have read and agree to our Terms and Conditions